EconPapers    
Economics at your fingertips  
 

New empirical likelihood inference for the mean residual life with length-biased and right-censored data

Kangni Alemdjrodo and Yichuan Zhao

Journal of Nonparametric Statistics, 2020, vol. 32, issue 4, 1029-1046

Abstract: The mean residual life (MRL) function for a given random variable T is the expected remaining lifetime of T after a fixed time point t. It is of great interest in survival analysis, reliability, actuarial applications, duration modelling, etc. Liang, Shen, and He [‘Likelihood Ratio Inference for Mean Residual Life of Length-biased Random Variable’, Acta Mathematicae Applicatae Sinica, English Series, 32, 269–282] proposed empirical likelihood (EL) confidence intervals for the MRL based on length-biased right-censored data. However, their -2log(EL ratio) has a scaled chi-squared distribution. To avoid the estimation of the scale parameter in constructing confidence intervals, we propose a new empirical likelihood (NEL) based on i.i.d. representation of Kaplan–Meier weights involved in the estimating equation. We also develop the adjusted new empirical likelihood (ANEL) to improve the coverage probability for small samples. The performance of the NEL and the ANEL compared to the existing EL is demonstrated via simulations: the NEL-based and ANEL-based confidence intervals have better coverage accuracy than the EL-based confidence intervals. Finally, our methods are illustrated with a real data set.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2020.1840568 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:32:y:2020:i:4:p:1029-1046

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2020.1840568

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:32:y:2020:i:4:p:1029-1046