Score estimation of monotone partially linear index model
Mengshan Xu and
Taisuke Otsu
Journal of Nonparametric Statistics, 2020, vol. 32, issue 4, 838-863
Abstract:
This paper studies semiparametric estimation of a partially linear single index model with a monotone link function. Our estimator is an extension of the score-type estimator developed by Balabdaoui et al. (2019) for the monotone single index model, which profiles out the unknown link function by isotonic regression. An attractive feature of the proposed estimator is that it is free from tuning parameters for nonparametric smoothing. We show that our estimator for the finite-dimensional components is $\sqrt {n} $n-consistent and asymptotically normal. By introducing an additional smoothing to obtain the efficient score, we propose an asymptotically efficient estimator for the finite-dimensional components. Furthermore, we establish the asymptotic validity of a bootstrap inference method based the score-type estimator, which is also free from tuning parameters. A simulation study illustrates the usefulness of the proposed method.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2020.1834105 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:32:y:2020:i:4:p:838-863
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2020.1834105
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().