Oracle inequalities and upper bounds for kernel density estimators on manifolds and more general metric spaces
Galatia Cleanthous,
Athanasios G. Georgiadis and
Emilio Porcu
Journal of Nonparametric Statistics, 2022, vol. 34, issue 4, 734-757
Abstract:
We prove oracle inequalities and upper bounds for kernel density estimators on a very broad class of metric spaces. Precisely we consider the setting of a doubling measure metric space in the presence of a non-negative self-adjoint operator whose heat kernel enjoys Gaussian regularity. Many classical settings like Euclidean spaces, spheres, balls, cubes as well as general Riemannian manifolds, are contained in our framework. Moreover the rate of convergence we achieve is the optimal one in these special cases. Finally we provide the general methodology of constructing the proper kernels when the manifold under study is given and we give precise examples for the case of the sphere.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2022.2070162 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:34:y:2022:i:4:p:734-757
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2022.2070162
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().