Regression analysis of mixed panel count data with dependent observation processes
Lei Ge,
Jaihee Choi,
Hui Zhao,
Yang Li and
Jianguo Sun
Journal of Nonparametric Statistics, 2023, vol. 35, issue 4, 669-684
Abstract:
Event history data commonly occur in many areas and a great deal of literature on their analysis has been established. However, most of the existing methods apply only to a single type of event history data. Recently, several authors have discussed the analysis of mixed types of event history data and the existence of dependent observation processes is another issue that one often has to deal with in the analysis of event history data. This paper discusses regression analysis of mixed panel count data with dependent observation processes, which has not been addressed in the literature, and for the problem, an approximate likelihood estimation approach is proposed. For the implementation, an EM algorithm is developed and the proposed estimators are shown to be consistent and asymptotically normal. An extensive simulation study is performed to assess the performance of the proposed approach and indicates that it works well in practical situations. An application to a set of real data is provided.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2023.2203275 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:35:y:2023:i:4:p:669-684
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2023.2203275
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().