Nonparametric instrument model averaging
Jianan Chen,
Binyan Jiang and
Jialiang Li
Journal of Nonparametric Statistics, 2023, vol. 35, issue 4, 905-926
Abstract:
We present a new nonparametric model averaging approach to the instrumental variable (IV) regression where the effects of multiple instruments on the endogenous variable are modelled as nonparametric functions in the reduced form equations. Even if individual IVs may have weak and nonlinear relevance to the exposure, our proposed model averaging is able to ensemble their effects with optimal weights to produce valid inference. Our analysis covers both the case in which the number of IV is fixed and the case in which the dimension of IV is diverging with sample size. This novel framework can be especially beneficial to the practical situations involving weak IVs since in many recent observational studies we may encounter a large number of instruments and their quality could range from poor to strong. Numerical studies are carried out and comparisons are made between our proposed method and a wide range of existing alternative methods.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2023.2215339 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:35:y:2023:i:4:p:905-926
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2023.2215339
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().