EconPapers    
Economics at your fingertips  
 

Nonparametric regression with nonignorable missing covariates and outcomes using bounded inverse weighting

Ruoxu Tan

Journal of Nonparametric Statistics, 2023, vol. 35, issue 4, 927-946

Abstract: We consider nonparametric regression where the covariate and the outcome variable are both subject to missingness. Previous work only discussed one of the variables that may be missing, but not both. Since missing at random is not an appropriate assumption in such a nonmonotone missing data context, we shall assume a missing not at random mechanism. We construct an inverse probability weighting local polynomial estimator based on a recently developed nonmonotone missing data model. It is well known that if the inverse probability weighting is too large at some fully observed cases, the resulting estimator would be deteriorated. To overcome this issue, we introduce a constrained maximum likelihood estimation and an estimating equations method to ensure that the resulting weighting is bounded. We prove the asymptotically normal result for the resulting regression estimator. Simulation results show good practical performance of our method. A real data example is also presented.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2023.2215341 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:35:y:2023:i:4:p:927-946

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2023.2215341

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:35:y:2023:i:4:p:927-946