Sparse kernel sufficient dimension reduction
Bingyuan Liu and
Lingzhou Xue
Journal of Nonparametric Statistics, 2025, vol. 37, issue 4, 897-920
Abstract:
The sufficient dimension reduction (SDR) with sparsity has received much attention for analysing high-dimensional data. We study a nonparametric sparse kernel sufficient dimension reduction (KSDR) based on the reproducing kernel Hilbert space, which extends the methodology of the sparse SDR based on inverse moment methods. We establish the statistical consistency and efficient estimation of the sparse KSDR under the high-dimensional setting where the dimension diverges as the sample size increases. Computationally, we introduce a new nonconvex alternating directional method of multipliers (ADMM) to solve the challenging sparse SDR and propose the nonconvex linearised ADMM to solve the more challenging sparse KSDR. We study the computational guarantees of the proposed ADMMs and show an explicit iteration complexity bound to reach the stationary solution. We demonstrate the finite-sample properties in simulation studies and a real application.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2024.2360551 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:37:y:2025:i:4:p:897-920
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2024.2360551
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().