A nonparametric conditional mode estimate
A. Quintela-Del-Río and
Ph. Vieu
Journal of Nonparametric Statistics, 1997, vol. 8, issue 3, 253-266
Abstract:
This paper proposes a new nonparametric estimate of the conditional mode. This mode estimate is obtained from kernel smoothing of the first derivative of the conditional density function with location adaptive bandwidth. We give the rates of convergence of this estimate under general dependence conditions on the sample that make our results valid for nonparametric prediction of time series. As a by-products, we also get rate of convergence of the usual mode of a density function under dependence, and we give some extensions to local bandwidth of recent results on kernel estimation under mixing conditions.
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485259708832723 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:8:y:1997:i:3:p:253-266
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485259708832723
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().