Does Perception Matter in Asset Pricing? Modeling Volatility Jumps Using Twitter-Based Sentiment Indices
Anthony Sanford
Journal of Behavioral Finance, 2022, vol. 23, issue 3, 262-280
Abstract:
This article uses public perceptions to forecast short-term fluctuations in asset prices. Based on four billion tweets scraped between 2009 and 2019, I perform textual analysis to construct daily sentiment indices. The sentiment indices allow us to forecast stock volatility jumps as well as expected jump levels. The implications of forecasting volatility jumps are substantive. First, volatility jumps have a significant effect on option prices. Second, changes in the volatility path lead to large (negatively related) changes in the prices’ future trajectory. Determining what information causes jumps allows for better risk management and more accurate asset pricing models.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/15427560.2020.1866573 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:hbhfxx:v:23:y:2022:i:3:p:262-280
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/hbhf20
DOI: 10.1080/15427560.2020.1866573
Access Statistics for this article
Journal of Behavioral Finance is currently edited by Brian Bruce
More articles in Journal of Behavioral Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().