Participatory multi-objective optimization for planning dense and green cities
Sergio Wicki,
Jonas Schwaab,
Jan Perhac and
Adrienne Grêt-Regamey
Journal of Environmental Planning and Management, 2021, vol. 64, issue 14, 2532-2551
Abstract:
The consideration of urban ecosystem services becomes increasingly important when planning compact cities. We implement a multi-objective optimization approach to support decision-makers in their efforts to develop green and dense cities. Embedded in a participatory process, the applied genetic algorithm allows us to assess spatial tradeoffs between urban ecosystem services and compactness. The optimization model is embedded in a decision support system for interactive analysis and communication of the results, facilitating the engagement of planners to support sustainable development. We illustrate the process in a multi-level case study in Singapore, a tropical city state aiming to pursue its distinct greening strategy. The whole process, from the problem definition to the obtained solution set, is evaluated using a feedback loop with stakeholders. Using this approach, we identify robust and best-suited urban development locations as well as temporal prioritization schemes evolving around future public transportation nodes.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/09640568.2021.1875999 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jenpmg:v:64:y:2021:i:14:p:2532-2551
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJEP20
DOI: 10.1080/09640568.2021.1875999
Access Statistics for this article
Journal of Environmental Planning and Management is currently edited by Dr Neil Powe, Dr Ken Willis and George Bill Page
More articles in Journal of Environmental Planning and Management from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().