The Trace Restriction: An Alternative Identification Strategy for the Bayesian Multinomial Probit Model
Lane F. Burgette and
Erik V. Nordheim
Journal of Business & Economic Statistics, 2012, vol. 30, issue 3, 404-410
Abstract:
Previous authors have made Bayesian multinomial probit models identifiable by fixing a parameter on the main diagonal of the covariance matrix. The choice of which element one fixes can influence posterior predictions. Thus, we propose restricting the trace of the covariance matrix, which we achieve without computational penalty. This permits a prior that is symmetric to permutations of the nonbase outcome categories. We find in real and simulated consumer choice datasets that the trace-restricted model is less prone to making extreme predictions. Further, the trace restriction can provide stronger identification, yielding marginal posterior distributions that are more easily interpreted.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2012.680416 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:30:y:2012:i:3:p:404-410
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2012.680416
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().