Market-Based Credit Ratings
Drew Creal,
Robert B. Gramacy and
Ruey S. Tsay
Journal of Business & Economic Statistics, 2014, vol. 32, issue 3, 430-444
Abstract:
We present a methodology for rating in real-time the creditworthiness of public companies in the U.S. from the prices of traded assets. Our approach uses asset pricing data to impute a term structure of risk neutral survival functions or default probabilities. Firms are then clustered into ratings categories based on their survival functions using a functional clustering algorithm. This allows all public firms whose assets are traded to be directly rated by market participants. For firms whose assets are not traded, we show how they can be indirectly rated by matching them to firms that are traded based on observable characteristics. We also show how the resulting ratings can be used to construct loss distributions for portfolios of bonds. Finally, we compare our ratings to Standard & Poors and find that, over the period 2005 to 2011, our ratings lead theirs for firms that ultimately default.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2014.902763 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:32:y:2014:i:3:p:430-444
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2014.902763
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().