EconPapers    
Economics at your fingertips  
 

A Varying-Coefficient Expectile Model for Estimating Value at Risk

Shangyu Xie, Yong Zhou and Alan T. K. Wan

Journal of Business & Economic Statistics, 2014, vol. 32, issue 4, 576-592

Abstract: This article develops a nonparametric varying-coefficient approach for modeling the expectile-based value at risk (EVaR). EVaR has an advantage over the conventional quantile-based VaR (QVaR) of being more sensitive to the magnitude of extreme losses. EVaR can also be used for calculating QVaR and expected shortfall (ES) by exploiting the one-to-one mapping from expectiles to quantiles, and the relationship between VaR and ES. Previous studies on conditional EVaR estimation only considered parametric autoregressive model set-ups, which account for the stochastic dynamics of asset returns but ignore other exogenous economic and investment related factors. Our approach overcomes this drawback and allows expectiles to be modeled directly using covariates that may be exogenous or lagged dependent in a flexible way. Risk factors associated with profits and losses can then be identified via the expectile regression at different levels of prudentiality. We develop a local linear smoothing technique for estimating the coefficient functions within an asymmetric least squares minimization set-up, and establish the consistency and asymptotic normality of the resultant estimator. To save computing time, we propose to use a one-step weighted local least squares procedure to compute the estimates. Our simulation results show that the computing advantage afforded by this one-step procedure over full iteration is not compromised by a deterioration in estimation accuracy. Real data examples are used to illustrate our method. Supplementary materials for this article are available online.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2014.917979 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:32:y:2014:i:4:p:576-592

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2014.917979

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:32:y:2014:i:4:p:576-592