EconPapers    
Economics at your fingertips  
 

Flexible Modeling of Dependence in Volatility Processes

Maria Kalli and Jim Griffin

Journal of Business & Economic Statistics, 2015, vol. 33, issue 1, 102-113

Abstract: This article proposes a novel stochastic volatility (SV) model that draws from the existing literature on autoregressive SV models, aggregation of autoregressive processes, and Bayesian nonparametric modeling to create a SV model that can capture long-range dependence. The volatility process is assumed to be the aggregate of autoregressive processes, where the distribution of the autoregressive coefficients is modeled using a flexible Bayesian approach. The model provides insight into the dynamic properties of the volatility. An efficient algorithm is defined which uses recently proposed adaptive Monte Carlo methods. The proposed model is applied to the daily returns of stocks.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2014.925457 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:33:y:2015:i:1:p:102-113

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2014.925457

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:33:y:2015:i:1:p:102-113