Flexible Modeling of Dependence in Volatility Processes
Maria Kalli and
Jim Griffin
Journal of Business & Economic Statistics, 2015, vol. 33, issue 1, 102-113
Abstract:
This article proposes a novel stochastic volatility (SV) model that draws from the existing literature on autoregressive SV models, aggregation of autoregressive processes, and Bayesian nonparametric modeling to create a SV model that can capture long-range dependence. The volatility process is assumed to be the aggregate of autoregressive processes, where the distribution of the autoregressive coefficients is modeled using a flexible Bayesian approach. The model provides insight into the dynamic properties of the volatility. An efficient algorithm is defined which uses recently proposed adaptive Monte Carlo methods. The proposed model is applied to the daily returns of stocks.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2014.925457 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:33:y:2015:i:1:p:102-113
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2014.925457
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().