Modeling Bimodal Discrete Data Using Conway-Maxwell-Poisson Mixture Models
Pragya Sur,
Galit Shmueli,
Smarajit Bose and
Paromita Dubey
Journal of Business & Economic Statistics, 2015, vol. 33, issue 3, 352-365
Abstract:
Bimodal truncated count distributions are frequently observed in aggregate survey data and in user ratings when respondents are mixed in their opinion. They also arise in censored count data, where the highest category might create an additional mode. Modeling bimodal behavior in discrete data is useful for various purposes, from comparing shapes of different samples (or survey questions) to predicting future ratings by new raters. The Poisson distribution is the most common distribution for fitting count data and can be modified to achieve mixtures of truncated Poisson distributions. However, it is suitable only for modeling equidispersed distributions and is limited in its ability to capture bimodality. The Conway-Maxwell-Poisson (CMP) distribution is a two-parameter generalization of the Poisson distribution that allows for over- and underdispersion. In this work, we propose a mixture of CMPs for capturing a wide range of truncated discrete data, which can exhibit unimodal and bimodal behavior. We present methods for estimating the parameters of a mixture of two CMP distributions using an EM approach. Our approach introduces a special two-step optimization within the M step to estimate multiple parameters. We examine computational and theoretical issues. The methods are illustrated for modeling ordered rating data as well as truncated count data, using simulated and real examples.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2014.949343 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:33:y:2015:i:3:p:352-365
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2014.949343
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().