EconPapers    
Economics at your fingertips  
 

Inference for Time Series Regression Models With Weakly Dependent and Heteroscedastic Errors

Yeonwoo Rho and Xiaofeng Shao

Journal of Business & Economic Statistics, 2015, vol. 33, issue 3, 444-457

Abstract: Motivated by the need to assess the significance of the trend in some macroeconomic series, this article considers inference of a parameter in parametric trend functions when the errors exhibit certain degrees of nonstationarity with changing unconditional variances. We adopt the recently developed self-normalized approach to avoid the difficulty involved in the estimation of the asymptotic variance of the ordinary least-square estimator. The limiting distribution of the self-normalized quantity is nonpivotal but can be consistently approximated by using the wild bootstrap, which is not consistent in general without studentization. Numerical simulation demonstrates favorable coverage properties of the proposed method in comparison with alternative ones. The U.S. nominal wages series is analyzed to illustrate the finite sample performance. Some technical details are included in the online supplemental material.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2014.962698 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:33:y:2015:i:3:p:444-457

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2014.962698

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:jnlbes:v:33:y:2015:i:3:p:444-457