EconPapers    
Economics at your fingertips  
 

Bounds on Treatment Effects in the Presence of Sample Selection and Noncompliance: The Wage Effects of Job Corps

Xuan Chen and Carlos A. Flores

Journal of Business & Economic Statistics, 2015, vol. 33, issue 4, 523-540

Abstract: Randomized and natural experiments are commonly used in economics and other social science fields to estimate the effect of programs and interventions. Even when employing experimental data, assessing the impact of a treatment is often complicated by the presence of sample selection (outcomes are only observed for a selected group) and noncompliance (some treatment group individuals do not receive the treatment while some control individuals do). We address both of these identification problems simultaneously and derive nonparametric bounds for average treatment effects within a principal stratification framework. We employ these bounds to empirically assess the wage effects of Job Corps (JC), the most comprehensive and largest federally funded job training program for disadvantaged youth in the United States. Our results strongly suggest positive average effects of JC on wages for individuals who comply with their treatment assignment and would be employed whether or not they enrolled in JC (the "always-employed compliers"). Under relatively weak monotonicity and mean dominance assumptions, we find that this average effect is between 5.7% and 13.9% 4 years after randomization, and between 7.7% and 17.5% for non-Hispanics. Our results are consistent with larger effects of JC on wages than those found without adjusting for noncompliance.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (31)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2014.975229 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:33:y:2015:i:4:p:523-540

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2014.975229

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:33:y:2015:i:4:p:523-540