On a Threshold Double Autoregressive Model
Dong Li,
Shiqing Ling and
Rongmao Zhang
Journal of Business & Economic Statistics, 2016, vol. 34, issue 1, 68-80
Abstract:
This article first proposes a score-based test for a double autoregressive model against a threshold double autoregressive (AR) model. It is an asymptotically distribution-free test and is easy to implement in practice. The article further studies the quasi-maximum likelihood estimation of a threshold double autoregressive model. It is shown that the estimated threshold is n -consistent and converges weakly to a functional of a two-sided compound Poisson process and the remaining parameters are asymptotically normal. Our results include the asymptotic theory of the estimator for threshold AR models with autoregressive conditional heteroscedastic (ARCH) errors and threshold ARCH models as special cases, each of which is also new in literature. Two portmanteau-type statistics are also derived for checking the adequacy of fitted model when either the error is nonnormal or the threshold is unknown. Simulation studies are conducted to assess the performance of the score-based test and the estimator in finite samples. The results are illustrated with an application to the weekly closing prices of Hang Seng Index. This article also includes the weak convergence of a score-marked empirical process on the space under an α-mixing assumption, which is independent of interest.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2014.1001028 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:34:y:2016:i:1:p:68-80
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2014.1001028
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().