Detecting Variance Change-Points for Blocked Time Series and Dependent Panel Data
Minya Xu,
Ping-Shou Zhong and
Wei Wang
Journal of Business & Economic Statistics, 2016, vol. 34, issue 2, 213-226
Abstract:
This article proposes a class of weighted differences of averages (WDA) statistics to test and estimate possible change-points in variance for time series with weakly dependent blocks and dependent panel data without specific distributional assumptions. We derive the asymptotic distributions of the test statistics for testing the existence of a single variance change-point under the null and local alternatives. We also study the consistency of the change-point estimator. Within the proposed class of the WDA test statistics, a standardized WDA test is shown to have the best consistency rate and is recommended for practical use. An iterative binary searching procedure is suggested for estimating the locations of possible multiple change-points in variance, whose consistency is also established. Simulation studies are conducted to compare detection power and number of wrong rejections of the proposed procedure to that of a cumulative sum (CUSUM) based test and a likelihood ratio-based test. Finally, we apply the proposed method to a stock index dataset and an unemployment rate dataset. Supplementary materials for this article are available online.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1026438 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:34:y:2016:i:2:p:213-226
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2015.1026438
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().