A Statistical Model for Social Network Labeling
Danyang Huang,
Jun Yin,
Tao Shi and
Hansheng Wang
Journal of Business & Economic Statistics, 2016, vol. 34, issue 3, 368-374
Abstract:
We consider a social network from which one observes not only network structure (i.e., nodes and edges) but also a set of labels (or tags, keywords) for each node (or user). These labels are self-created and closely related to the user’s career status, life style, personal interests, and many others. Thus, they are of great interest for online marketing. To model their joint behavior with network structure, a complete data model is developed. The model is based on the classical p1 model but allows the reciprocation parameter to be label-dependent. By focusing on connected pairs only, the complete data model can be generalized into a conditional model. Compared with the complete data model, the conditional model specifies only the conditional likelihood for the connected pairs. As a result, it suffers less risk from model misspecification. Furthermore, because the conditional model involves connected pairs only, the computational cost is much lower. The resulting estimator is consistent and asymptotically normal. Depending on the network sparsity level, the convergence rate could be different. To demonstrate its finite sample performance, numerical studies (based on both simulated and real datasets) are presented.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1039014 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:34:y:2016:i:3:p:368-374
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2015.1039014
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().