Using the Bootstrap to Test for Symmetry Under Unknown Dependence
Zacharias Psaradakis
Journal of Business & Economic Statistics, 2016, vol. 34, issue 3, 406-415
Abstract:
This article considers tests for symmetry of the one-dimensional marginal distribution of fractionally integrated processes. The tests are implemented by using an autoregressive sieve bootstrap approximation to the null sampling distribution of the relevant test statistics. The sieve bootstrap allows inference on symmetry to be carried out without knowledge of either the memory parameter of the data or of the appropriate norming factor for the test statistic and its asymptotic distribution. The small-sample properties of the proposed method are examined by means of Monte Carlo experiments, and applications to real-world data are also presented.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1043368 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:34:y:2016:i:3:p:406-415
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2015.1043368
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().