Default Correlations and Large-Portfolio Credit Analysis
Jin-Chuan Duan and
Weimin Miao
Journal of Business & Economic Statistics, 2016, vol. 34, issue 4, 536-546
Abstract:
A factor model with sparsely correlated residuals is used to model short-term probabilities of default and other corporate exits while permitting missing data, and serves as the basis for generating default correlations. This novel factor model can then be used to produce portfolio credit risk profiles (default-rate and portfolio-loss distributions) by complementing an existing credit portfolio aggregation method with a novel simulation–convolution algorithm. We apply the model and the portfolio aggregation method on a global sample of 40,560 exchange-listed firms and focus on three large portfolios (the U.S., Eurozone-12, and ASEAN-5). Our results reaffirm the critical importance of default correlations. With default correlations, both default-rate and portfolio-loss distributions become far more right-skewed, reflecting a much higher likelihood of defaulting together. Our results also reveal that portfolio credit risk profiles evaluated at two different time points can change drastically with moving economic conditions, suggesting the importance of modeling credit risks with a dynamic system. Our factor model coupled with the aggregation algorithm provides a useful tool for active credit portfolio management.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1087855 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:34:y:2016:i:4:p:536-546
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2015.1087855
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().