Bayesian Analysis of Spatial Panel Autoregressive Models With Time-Varying Endogenous Spatial Weight Matrices, Common Factors, and Random Coefficients
Xiaoyi Han and
Lung-Fei Lee
Journal of Business & Economic Statistics, 2016, vol. 34, issue 4, 642-660
Abstract:
This article examines spatial panel autoregressive (SAR) models with dynamic, time-varying endogenous spatial weights matrices, common factors, and random coefficients. An empirical application is on the spillover effects of state Medicaid spending. Endogeneity of spatial weights matrices comes from the correlation of “economic distance” and the disturbances in the SAR equation. Common factors control for common shocks to all states and random coefficients may capture heterogeneity in responses. The Bayesian Markov chain Monte Carlo (MCMC) estimation is developed. Identification of factors and factor loadings, and model selection issues based upon the deviance information criterion (DIC) are explored. We find that a state’s Medicaid related spending is positively and significantly affected by those of its neighbors. Both welfare motivated move and yardstick competition are possible sources of strategic interactions among state governments. Welfare motivated move turns out to be more a driving force for the interdependence and states do exhibit heterogenous responses.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2016.1167058 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:34:y:2016:i:4:p:642-660
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2016.1167058
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().