EconPapers    
Economics at your fingertips  
 

Estimating Spatial Autocorrelation With Sampled Network Data

Jing Zhou, Yundong Tu, Yuxin Chen and Hansheng Wang

Journal of Business & Economic Statistics, 2017, vol. 35, issue 1, 130-138

Abstract: Spatial autocorrelation is a parameter of importance for network data analysis. To estimate spatial autocorrelation, maximum likelihood has been popularly used. However, its rigorous implementation requires the whole network to be observed. This is practically infeasible if network size is huge (e.g., Facebook, Twitter, Weibo, WeChat, etc.). In that case, one has to rely on sampled network data to infer about spatial autocorrelation. By doing so, network relationships (i.e., edges) involving unsampled nodes are overlooked. This leads to distorted network structure and underestimated spatial autocorrelation. To solve the problem, we propose here a novel solution. By temporarily assuming that the spatial autocorrelation is small, we are able to approximate the likelihood function by its first-order Taylor’s expansion. This leads to the method of approximate maximum likelihood estimator (AMLE), which further inspires the development of paired maximum likelihood estimator (PMLE). Compared with AMLE, PMLE is computationally superior and thus is particularly useful for large-scale network data analysis. Under appropriate regularity conditions (without assuming a small spatial autocorrelation), we show theoretically that PMLE is consistent and asymptotically normal. Numerical studies based on both simulated and real datasets are presented for illustration purpose.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1061437 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:35:y:2017:i:1:p:130-138

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2015.1061437

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:35:y:2017:i:1:p:130-138