EconPapers    
Economics at your fingertips  
 

Semiparametric Estimation of Risk–Return Relationships

Juan Carlos Escanciano, Juan Carlos Pardo-Fernández and Ingrid Van Keilegom ()

Journal of Business & Economic Statistics, 2017, vol. 35, issue 1, 40-52

Abstract: This article proposes semiparametric generalized least-squares estimation of parametric restrictions between the conditional mean and the conditional variance of excess returns given a set of parametric factors. A distinctive feature of our estimator is that it does not require a fully parametric model for the conditional mean and variance. We establish consistency and asymptotic normality of the estimates. The theory is nonstandard due to the presence of estimated factors. We provide sufficient conditions for the estimated factors not to have an impact in the asymptotic standard error of estimators. A simulation study investigates the finite sample performance of the estimates. Finally, an application to the CRSP value-weighted excess returns highlights the merits of our approach. In contrast to most previous studies using nonparametric estimates, we find a positive and significant price of risk in our semiparametric setting.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1052879 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: Semiparametric Estimation of Risk-return Relationships (2017)
Working Paper: Semiparametric Estimation of Risk-return Relationships (2013) Downloads
Working Paper: SEMIPARAMETRIC ESTIMATION OF RISK-RETURN RELATIONSHIPS (2013) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:35:y:2017:i:1:p:40-52

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2015.1052879

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:35:y:2017:i:1:p:40-52