EconPapers    
Economics at your fingertips  
 

Testing for Threshold Diffusion

Fei Su and Kung-Sik Chan

Journal of Business & Economic Statistics, 2017, vol. 35, issue 2, 218-227

Abstract: The threshold diffusion model assumes a piecewise linear drift term and a piecewise smooth diffusion term, which constitutes a rich model for analyzing nonlinear continuous-time processes. We consider the problem of testing for threshold nonlinearity in the drift term. We do this by developing a quasi-likelihood test derived under the working assumption of a constant diffusion term, which circumvents the problem of generally unknown functional form for the diffusion term. The test is first developed for testing for one threshold at which the drift term breaks into two linear functions. We show that under some mild regularity conditions, the asymptotic null distribution of the proposed test statistic is given by the distribution of certain functional of some centered Gaussian process. We develop a computationally efficient method for calibrating the p-value of the test statistic by bootstrapping its asymptotic null distribution. The local power function is also derived, which establishes the consistency of the proposed test. The test is then extended to testing for multiple thresholds. We demonstrate the efficacy of the proposed test by simulations. Using the proposed test, we examine the evidence of nonlinearity in the term structure of a long time series of U.S. interest rates.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1073594 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:35:y:2017:i:2:p:218-227

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2015.1073594

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:35:y:2017:i:2:p:218-227