On Mixture Double Autoregressive Time Series Models
Guodong Li,
Qianqian Zhu,
Zhao Liu and
Wai Keung Li
Journal of Business & Economic Statistics, 2017, vol. 35, issue 2, 306-317
Abstract:
This article proposes a mixture double autoregressive model by introducing the flexibility of mixture models to the double autoregressive model, a novel conditional heteroscedastic model recently proposed in the literature. To make it more flexible, the mixing proportions are further assumed to be time varying, and probabilistic properties including strict stationarity and higher order moments are derived. Inference tools including the maximum likelihood estimation, an expectation–maximization (EM) algorithm for searching the estimator and an information criterion for model selection are carefully studied for the logistic mixture double autoregressive model, which has two components and is encountered more frequently in practice. Monte Carlo experiments give further support to the new models, and the analysis of an empirical example is also reported.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1102735 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:35:y:2017:i:2:p:306-317
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2015.1102735
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().