EconPapers    
Economics at your fingertips  
 

Threshold Estimation via Group Orthogonal Greedy Algorithm

Ngai Hang Chan, Ching-Kang Ing (), Yuanbo Li and Chun Yip Yau

Journal of Business & Economic Statistics, 2017, vol. 35, issue 2, 334-345

Abstract: A threshold autoregressive (TAR) model is an important class of nonlinear time series models that possess many desirable features such as asymmetric limit cycles and amplitude-dependent frequencies. Statistical inference for the TAR model encounters a major difficulty in the estimation of thresholds, however. This article develops an efficient procedure to estimate the thresholds. The procedure first transforms multiple-threshold detection to a regression variable selection problem, and then employs a group orthogonal greedy algorithm to obtain the threshold estimates. Desirable theoretical results are derived to lend support to the proposed methodology. Simulation experiments are conducted to illustrate the empirical performances of the method. Applications to U.S. GNP data are investigated.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1064820 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:35:y:2017:i:2:p:334-345

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2015.1064820

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:35:y:2017:i:2:p:334-345