Threshold Estimation via Group Orthogonal Greedy Algorithm
Ngai Hang Chan,
Ching-Kang Ing (),
Yuanbo Li and
Chun Yip Yau
Journal of Business & Economic Statistics, 2017, vol. 35, issue 2, 334-345
Abstract:
A threshold autoregressive (TAR) model is an important class of nonlinear time series models that possess many desirable features such as asymmetric limit cycles and amplitude-dependent frequencies. Statistical inference for the TAR model encounters a major difficulty in the estimation of thresholds, however. This article develops an efficient procedure to estimate the thresholds. The procedure first transforms multiple-threshold detection to a regression variable selection problem, and then employs a group orthogonal greedy algorithm to obtain the threshold estimates. Desirable theoretical results are derived to lend support to the proposed methodology. Simulation experiments are conducted to illustrate the empirical performances of the method. Applications to U.S. GNP data are investigated.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1064820 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:35:y:2017:i:2:p:334-345
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2015.1064820
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().