Estimation of Some Nonlinear Panel Data Models With Both Time-Varying and Time-Invariant Explanatory Variables
Bo E. Honoré and
Michaela Kesina
Journal of Business & Economic Statistics, 2017, vol. 35, issue 4, 543-558
Abstract:
The so-called “fixed effects” approach to the estimation of panel data models suffers from the limitation that it is not possible to estimate the coefficients on explanatory variables that are time-invariant. This is in contrast to a “random effects” approach, which achieves this by making much stronger assumptions on the relationship between the explanatory variables and the individual-specific effect. In a linear model, it is possible to obtain the best of both worlds by making random effects-type assumptions on the time-invariant explanatory variables while maintaining the flexibility of a fixed effects approach when it comes to the time-varying covariates. This article attempts to do the same for some popular nonlinear models.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1123635 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:35:y:2017:i:4:p:543-558
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2015.1123635
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().