Simple Estimators for Invertible Index Models
Hyungtaik Ahn,
Hidehiko Ichimura,
James Powell and
Paul Ruud
Journal of Business & Economic Statistics, 2018, vol. 36, issue 1, 1-10
Abstract:
This article considers estimation of the unknown linear index coefficients of a model in which a number of nonparametrically identified reduced form parameters are assumed to be smooth and invertible function of one or more linear indices. The results extend the previous literature by allowing the number of reduced form parameters to exceed the number of indices (i.e., the indices are “overdetermined” by the reduced form parameters. The estimator of the unknown index coefficients (up to scale) is the eigenvector of a matrix (defined in terms of a first-step nonparametric estimator of the reduced form parameters) corresponding to its smallest (in magnitude) eigenvalue. Under suitable conditions, the proposed estimator is shown to be root-n-consistent and asymptotically normal, and under additional restrictions an efficient choice of a “weight matrix” is derived in the overdetermined case.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2017.1379405 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:1:p:1-10
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2017.1379405
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().