A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets
Roberto Casarin,
Domenico Sartore and
Marco Tronzano
Journal of Business & Economic Statistics, 2018, vol. 36, issue 1, 101-114
Abstract:
This article develops a new Markov-switching vector autoregressive (VAR) model with stochastic correlation for contagion analysis on financial markets. The correlation and the log-volatility dynamics are driven by two independent Markov chains, thus allowing for different effects such as volatility spill-overs and correlation shifts with various degrees of intensity. We outline a suitable Bayesian inference procedure based on Markov chain Monte Carlo algorithms. We then apply the model to some major and Asian-Pacific cross rates against the U.S. dollar and find strong evidence supporting the existence of contagion effects and correlation drops during crises, closely in line with the stylized facts outlined in the contagion literature. A comparison of this model with its closest competitors, such as a time-varying parameter VAR, reveals that our model has a better predictive ability. Supplementary materials for this article are available online
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1137757 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:1:p:101-114
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2015.1137757
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().