Discussion of “Simple Estimators for Invertible Index Models” by H. Ahn, H. Ichimura, J. Powell, and P. Ruud
Shakeeb Khan and
E. Tamer
Journal of Business & Economic Statistics, 2018, vol. 36, issue 1, 11-15
Abstract:
This is an interesting article that considers the question of inference on unknown linear index coefficients in a general class of models where reduced form parameters are invertible function of one or more linear index. Interpretable sufficient conditions such as monotonicity and or smoothness for the invertibility condition are provided. The results generalize some work in the previous literature by allowing the number of reduced form parameters to exceed the number of indices. The identification and estimation expand on the approach taken in previous work by the authors. Examples include Ahn, Powell, and Ichimura (2004) for monotone single-index regression models to a multi-index setting and extended by Blundell and Powell (2004) and Powell and Ruud (2008) to models with endogenous regressors and multinomial response, respectively. A key property of the inference approach taken is that the estimator of the unknown index coefficients (up to scale) is computationally simple to obtain (relative to other estimators in the literature) in that it is closed form. Specifically, unifying an approach for all models considered in this article, the authors propose an estimator, which is the eigenvector of a matrix (defined in terms of a preliminary estimator of the reduced form parameters) corresponding to its smallest eigenvalue. Under suitable conditions, the proposed estimator is shown to be root-n-consistent and asymptotically normal.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2017.1392312 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:1:p:11-15
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2017.1392312
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().