Economics at your fingertips  

Robust Inference for Inverse Stochastic Dominance

Francesco Andreoli ()

Journal of Business & Economic Statistics, 2018, vol. 36, issue 1, 146-159

Abstract: The notion of inverse stochastic dominance is gaining increasing support in risk, inequality, and welfare analysis as a relevant criterion for ranking distributions, which is alternative to the standard stochastic dominance approach. Its implementation rests on comparisons of two distributions’ quantile functions, or of their multiple partial integrals, at fixed population proportions. This article develops a novel statistical inference model for inverse stochastic dominance that is based on the influence function approach. The proposed method allows model-free evaluations that are limitedly affected by contamination in the data. Asymptotic normality of the estimators allows to derive tests for the restrictions implied by various forms of inverse stochastic dominance. Monte Carlo experiments and an application promote the qualities of the influence function estimator when compared with alternative dominance criteria.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8) Track citations by RSS feed

Downloads: (external link) (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

DOI: 10.1080/07350015.2015.1137758

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

Page updated 2022-06-30
Handle: RePEc:taf:jnlbes:v:36:y:2018:i:1:p:146-159