EconPapers    
Economics at your fingertips  
 

Semiparametric Spatial Autoregressive Models With Endogenous Regressors: With an Application to Crime Data

Tadao Hoshino ()

Journal of Business & Economic Statistics, 2018, vol. 36, issue 1, 160-172

Abstract: This study considers semiparametric spatial autoregressive models that allow for endogenous regressors, as well as the heterogenous effects of these regressors across spatial units. For the model estimation, we propose a semiparametric series generalized method of moments estimator. We establish that the proposed estimator is both consistent and asymptotically normal. As an empirical illustration, we apply the proposed model and method to Tokyo crime data to estimate how the existence of a neighborhood police substation (NPS) affects the household burglary rate. The results indicate that the presence of an NPS helps reduce household burglaries, and that the effects of some variables are heterogenous with respect to residential distribution patterns. Furthermore, we show that using a model that does not adjust for the endogeneity of NPS does not allow us to observe the significant relationship between NPS and the household burglary rate. Supplementary materials for this article are available online.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2016.1146145 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:1:p:160-172

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2016.1146145

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-31
Handle: RePEc:taf:jnlbes:v:36:y:2018:i:1:p:160-172