Integrated-Quantile-Based Estimation for First-Price Auction Models
Yao Luo and
Yuanyuan Wan
Journal of Business & Economic Statistics, 2018, vol. 36, issue 1, 173-180
Abstract:
This article considers nonparametric estimation of first-price auction models under the monotonicity restriction on the bidding strategy. Based on an integrated-quantile representation of the first-order condition, we propose a tuning-parameter-free estimator for the valuation quantile function. We establish its cube-root-n consistency and asymptotic distribution under weaker smoothness assumptions than those typically assumed in the empirical literature. If the latter are true, we also provide a trimming-free smoothed estimator and show that it is asymptotically normal and achieves the optimal rate of Guerre, Perrigne, and Vuong (2000). We illustrate our method using Monte Carlo simulations and an empirical study of the California highway procurement auctions. Supplementary materials for this article are available online.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2016.1166119 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:1:p:173-180
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2016.1166119
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().