EconPapers    
Economics at your fingertips  
 

Max-Linear Competing Factor Models

Qiurong Cui and Zhengjun Zhang

Journal of Business & Economic Statistics, 2018, vol. 36, issue 1, 62-74

Abstract: Models incorporating “latent” variables have been commonplace in financial, social, and behavioral sciences. Factor model, the most popular latent model, explains the continuous observed variables in a smaller set of latent variables (factors) in a matter of linear relationship. However, complex data often simultaneously display asymmetric dependence, asymptotic dependence, and positive (negative) dependence between random variables, which linearity and Gaussian distributions and many other extant distributions are not capable of modeling. This article proposes a nonlinear factor model that can model the above-mentioned variable dependence features but still possesses a simple form of factor structure. The random variables, marginally distributed as unit Fréchet distributions, are decomposed into max linear functions of underlying Fréchet idiosyncratic risks, transformed from Gaussian copula, and independent shared external Fréchet risks. By allowing the random variables to share underlying (latent) pervasive risks with random impact parameters, various dependence structures are created. This innovates a new promising technique to generate families of distributions with simple interpretations. We dive in the multivariate extreme value properties of the proposed model and investigate maximum composite likelihood methods for the impact parameters of the latent risks. The estimates are shown to be consistent. The estimation schemes are illustrated on several sets of simulated data, where comparisons of performance are addressed. We employ a bootstrap method to obtain standard errors in real data analysis. Real application to financial data reveals inherent dependencies that previous work has not disclosed and demonstrates the model’s interpretability to real data. Supplementary materials for this article are available online.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1137761 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:1:p:62-74

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2015.1137761

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:36:y:2018:i:1:p:62-74