EconPapers    
Economics at your fingertips  
 

On the Use of GLS Demeaning in Panel Unit Root Testing

Joakim Westerlund

Journal of Business & Economic Statistics, 2018, vol. 36, issue 2, 309-320

Abstract: One of the most well-known facts about unit root testing in time series is that the Dickey–Fuller (DF) test based on ordinary least squares (OLS) demeaned data suffers from low power, and that the use of generalized least squares (GLS) demeaning can lead to substantial power gains. Of course, this development has not gone unnoticed in the panel unit root literature. However, while the potential of using GLS demeaning is widely recognized, oddly enough, there are still no theoretical results available to facilitate a formal analysis of such demeaning in the panel data context. The present article can be seen as a reaction to this. The purpose is to evaluate the effect of GLS demeaning when used in conjuncture with the pooled OLS t-test for a unit root, resulting in a panel analog of the time series DF–GLS test. A key finding is that the success of GLS depend critically on the order in which the dependent variable is demeaned and first-differenced. If the variable is demeaned prior to taking first-differences, power is maximized by using GLS demeaning, whereas if the differencing is done first, then OLS demeaning is preferred. Furthermore, even if the former demeaning approach is used, such that GLS is preferred, the asymptotic distribution of the resulting test is independent of the tuning parameters that characterize the local alternative under which the demeaning performed. Hence, the demeaning can just as well be performed under the unit root null hypothesis. In this sense, GLS demeaning under the local alternative is redundant.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2016.1152969 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:2:p:309-320

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2016.1152969

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-24
Handle: RePEc:taf:jnlbes:v:36:y:2018:i:2:p:309-320