Estimation of Conditional Ranks and Tests of Exogeneity in Nonparametric Nonseparable Models
Frédérique Fève,
Jean-Pierre Florens and
Ingrid Van Keilegom ()
Journal of Business & Economic Statistics, 2018, vol. 36, issue 2, 334-345
Abstract:
Consider a nonparametric nonseparable regression model Y = ϕ(Z, U), where ϕ(Z, U) is strictly increasing in U and U ∼ U[0, 1]. We suppose that there exists an instrument W that is independent of U. The observable random variables are Y, Z, and W, all one-dimensional. We construct test statistics for the hypothesis that Z is exogenous, that is, that U is independent of Z. The test statistics are based on the observation that Z is exogenous if and only if V = FY|Z(Y|Z) is independent of W, and hence they do not require the estimation of the function ϕ. The asymptotic properties of the proposed tests are proved, and a bootstrap approximation of the critical values of the tests is shown to be consistent and to work for finite samples via simulations. An empirical example using the U.K. Family Expenditure Survey is also given. As a byproduct of our results we obtain the asymptotic properties of a kernel estimator of the distribution of V, which equals U when Z is exogenous. We show that this estimator converges to the uniform distribution at faster rate than the parametric n− 1/2-rate.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2016.1166120 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:2:p:334-345
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2016.1166120
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().