EconPapers    
Economics at your fingertips  
 

Goodness-of-Fit Testing for the Newcomb-Benford Law With Application to the Detection of Customs Fraud

Lucio Barabesi, Andrea Cerasa, Andrea Cerioli and Domenico Perrotta

Journal of Business & Economic Statistics, 2018, vol. 36, issue 2, 346-358

Abstract: The Newcomb-Benford law for digit sequences has recently attracted interest in antifraud analysis. However, most of its applications rely either on diagnostic checks of the data, or on informal decision rules. We suggest a new way of testing the Newcomb-Benford law that turns out to be particularly attractive for the detection of frauds in customs data collected from international trade. Our approach has two major advantages. The first one is that we control the rate of false rejections at each stage of the procedure, as required in antifraud applications. The second improvement is that our testing procedure leads to exact significance levels and does not rely on large-sample approximations. Another contribution of our work is the derivation of a simple expression for the digit distribution when the Newcomb-Benford law is violated, and a bound for a chi-squared type of distance between the actual digit distribution and the Newcomb-Benford one.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2016.1172014 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:2:p:346-358

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2016.1172014

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:36:y:2018:i:2:p:346-358