Optimal Forecasts from Markov Switching Models
Tom Boot and
Andreas Pick
Journal of Business & Economic Statistics, 2018, vol. 36, issue 4, 628-642
Abstract:
We derive forecasts for Markov switching models that are optimal in the mean square forecast error (MSFE) sense by means of weighting observations. We provide analytic expressions of the weights conditional on the Markov states and conditional on state probabilities. This allows us to study the effect of uncertainty around states on forecasts. It emerges that, even in large samples, forecasting performance increases substantially when the construction of optimal weights takes uncertainty around states into account. Performance of the optimal weights is shown through simulations and an application to U.S. GNP, where using optimal weights leads to significant reductions in MSFE. Supplementary materials for this article are available online.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2016.1219264 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:4:p:628-642
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2016.1219264
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().