EconPapers    
Economics at your fingertips  
 

Optimal Forecasts from Markov Switching Models

Tom Boot and Andreas Pick

Journal of Business & Economic Statistics, 2018, vol. 36, issue 4, 628-642

Abstract: We derive forecasts for Markov switching models that are optimal in the mean square forecast error (MSFE) sense by means of weighting observations. We provide analytic expressions of the weights conditional on the Markov states and conditional on state probabilities. This allows us to study the effect of uncertainty around states on forecasts. It emerges that, even in large samples, forecasting performance increases substantially when the construction of optimal weights takes uncertainty around states into account. Performance of the optimal weights is shown through simulations and an application to U.S. GNP, where using optimal weights leads to significant reductions in MSFE. Supplementary materials for this article are available online.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2016.1219264 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:36:y:2018:i:4:p:628-642

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2016.1219264

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:36:y:2018:i:4:p:628-642