Nonparametric Panel Estimation of Labor Supply
Gaosheng Ju,
Li Gan () and
Qi Li
Journal of Business & Economic Statistics, 2019, vol. 37, issue 2, 260-274
Abstract:
In this article, we estimate structural labor supply with piecewise-linear budgets and nonseparable endogenous unobserved heterogeneity. We propose a two-stage method to address the endogeneity issue that comes from the correlation between the covariates and unobserved heterogeneity. In the first stage, Evdokimov’s nonparametric de-convolution method serves to identify the conditional distribution of unobserved heterogeneity from the quasi-reduced model that uses panel data. In the second stage, the conditional distribution is plugged into the original structural model to estimate labor supply. We apply this methodology to estimate the labor supply of U.S. married men in 2004 and 2005. Our empirical work demonstrates that ignoring the correlation between the covariates and unobserved heterogeneity will bias the estimates of wage elasticities upward. The labor elasticity estimated from a fixed effects model is less than half of that obtained from a random effects model.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2017.1321546 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:37:y:2019:i:2:p:260-274
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2017.1321546
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().