Semiparametric Smooth Coefficient Stochastic Frontier Model With Panel Data
Feng Yao,
Fan Zhang and
Subal Kumbhakar
Journal of Business & Economic Statistics, 2019, vol. 37, issue 3, 556-572
Abstract:
We investigate the semiparametric smooth coefficient stochastic frontier model for panel data in which the distribution of the composite error term is assumed to be of known form but depends on some environmental variables. We propose multi-step estimators for the smooth coefficient functions as well as the parameters of the distribution of the composite error term and obtain their asymptotic properties. The Monte Carlo study demonstrates that the proposed estimators perform well in finite samples. We also consider an application and perform model specification test, construct confidence intervals, and estimate efficiency scores that depend on some environmental variables. The application uses a panel data on 451 large U.S. firms to explore the effects of computerization on productivity. Results show that two popular parametric models used in the stochastic frontier literature are likely to be misspecified. Compared with the parametric estimates, our semiparametric model shows a positive and larger overall effect of computer capital on the productivity. The efficiency levels, however, were not much different among the models. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2017.1390467 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:37:y:2019:i:3:p:556-572
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2017.1390467
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().