Estimation of Models With Multiple-Valued Explanatory Variables
Alexandre Poirier and
Nicolas Ziebarth
Journal of Business & Economic Statistics, 2019, vol. 37, issue 4, 586-597
Abstract:
We study estimation and inference when there are multiple values (“matches”) for the explanatory variables and only one of the matches is the correct one. This problem arises often when two datasets are linked together on the basis of information that does not uniquely identify regressor values. We offer a set of two intuitive conditions that ensure consistent inference using the average of the possible matches in a linear framework. The first condition is the exogeneity of the false match with respect to the regression error. The second condition is a notion of exchangeability between the true and false matches. Conditioning on the observed data, the probability that each match is correct is completely unrestricted. We perform a Monte Carlo study to investigate the estimator’s finite-sample performance relative to others proposed in the literature. Finally, we provide an empirical example revisiting a main area of application: the measurement of intergenerational elasticities in income. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2017.1391694 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:37:y:2019:i:4:p:586-597
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2017.1391694
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().