EconPapers    
Economics at your fingertips  
 

Confidence Intervals for Conditional Tail Risk Measures in ARMA–GARCH Models

Yannick Hoga

Journal of Business & Economic Statistics, 2019, vol. 37, issue 4, 613-624

Abstract: ARMA–GARCH models are widely used to model the conditional mean and conditional variance dynamics of returns on risky assets. Empirical results suggest heavy-tailed innovations with positive extreme value index for these models. Hence, one may use extreme value theory to estimate extreme quantiles of residuals. Using weak convergence of the weighted sequential tail empirical process of the residuals, we derive the limiting distribution of extreme conditional Value-at-Risk (CVaR) and conditional expected shortfall (CES) estimates for a wide range of extreme value index estimators. To construct confidence intervals, we propose to use self-normalization. This leads to improved coverage vis-à-vis the normal approximation, while delivering slightly wider confidence intervals. A data-driven choice of the number of upper order statistics in the estimation is suggested and shown to work well in simulations. An application to stock index returns documents the improvements of CVaR and CES forecasts.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2017.1401543 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:37:y:2019:i:4:p:613-624

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20

DOI: 10.1080/07350015.2017.1401543

Access Statistics for this article

Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan

More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlbes:v:37:y:2019:i:4:p:613-624