Estimating and Testing Nonlinear Local Dependence Between Two Time Series
Virginia Lacal and
Dag Tjøstheim
Journal of Business & Economic Statistics, 2019, vol. 37, issue 4, 648-660
Abstract:
The most common measure of dependence between two time series is the cross-correlation function. This measure gives a complete characterization of dependence for two linear and jointly Gaussian time series, but it often fails for nonlinear and non-Gaussian time series models, such as the ARCH-type models used in finance. The cross-correlation function is a global measure of dependence. In this article, we apply to bivariate time series the nonlinear local measure of dependence called local Gaussian correlation. It generally works well also for nonlinear models, and it can distinguish between positive and negative local dependence. We construct confidence intervals for the local Gaussian correlation and develop a test based on this measure of dependence. Asymptotic properties are derived for the parameter estimates, for the test functional and for a block bootstrap procedure. For both simulated and financial index data, we construct confidence intervals and we compare the proposed test with one based on the ordinary correlation and with one based on the Brownian distance correlation. Financial indexes are examined over a long time period and their local joint behavior, including tail behavior, is analyzed prior to, during and after the financial crisis. Supplementary material for this article is available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2017.1407777 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:37:y:2019:i:4:p:648-660
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2017.1407777
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().