A New Approach to Volatility Modeling: The Factorial Hidden Markov Volatility Model
Maciej Augustyniak,
Luc Bauwens and
Arnaud Dufays
Journal of Business & Economic Statistics, 2019, vol. 37, issue 4, 696-709
Abstract:
A new process—the factorial hidden Markov volatility (FHMV) model—is proposed to model financial returns or realized variances. Its dynamics are driven by a latent volatility process specified as a product of three components: a Markov chain controlling volatility persistence, an independent discrete process capable of generating jumps in the volatility, and a predictable (data-driven) process capturing the leverage effect. An economic interpretation is attached to each one of these components. Moreover, the Markov chain and jump components allow volatility to switch abruptly between thousands of states, and the transition matrix of the model is structured to generate a high degree of volatility persistence. An empirical study on six financial time series shows that the FHMV process compares favorably to state-of-the-art volatility models in terms of in-sample fit and out-of-sample forecasting performance over time horizons ranging from 1 to 100 days. Supplementary materials for this article are available online.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2017.1415910 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:37:y:2019:i:4:p:696-709
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2017.1415910
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().