Testing Nowcast Monotonicity with Estimated Factors
Jack Fosten and
Daniel Gutknecht
Journal of Business & Economic Statistics, 2020, vol. 38, issue 1, 107-123
Abstract:
This article proposes a test to determine whether “big data” nowcasting methods, which have become an important tool to many public and private institutions, are monotonically improving as new information becomes available. The test is the first to formalize existing evaluation procedures from the nowcasting literature. We place particular emphasis on models involving estimated factors, since factor-based methods are a leading case in the high-dimensional empirical nowcasting literature, although our test is still applicable to small-dimensional set-ups like bridge equations and MIDAS models. Our approach extends a recent methodology for testing many moment inequalities to the case of nowcast monotonicity testing, which allows the number of inequalities to grow with the sample size. We provide results showing the conditions under which both parameter estimation error and factor estimation error can be accommodated in this high-dimensional setting when using the pseudo out-of-sample approach. The finite sample performance of our test is illustrated using a wide range of Monte Carlo simulations, and we conclude with an empirical application of nowcasting U.S. real gross domestic product (GDP) growth and five GDP sub-components. Our test results confirm monotonicity for all but one sub-component (government spending), suggesting that the factor-augmented model may be misspecified for this GDP constituent. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2018.1458623 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:38:y:2020:i:1:p:107-123
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2018.1458623
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().