Detecting Structural Differences in Tail Dependence of Financial Time Series
Carsten Bormann and
Melanie Schienle
Journal of Business & Economic Statistics, 2020, vol. 38, issue 2, 380-392
Abstract:
An accurate assessment of tail inequalities and tail asymmetries of financial returns is key for risk management and portfolio allocation. We propose a new test procedure for detecting the full extent of such structural differences in the dependence of bivariate extreme returns. We decompose the testing problem into piecewise multiple comparisons of Cramér–von Mises distances of tail copulas. In this way, tail regions that cause differences in extreme dependence can be located and consequently be targeted by financial strategies. We derive the asymptotic properties of the test and provide a bootstrap approximation for finite samples. Moreover, we account for the multiplicity of the piecewise tail copula comparisons by adjusting individual p-values according to multiple testing techniques. Monte Carlo simulations demonstrate the test’s superior finite-sample properties for common financial tail risk models, both in the iid and the sequentially dependent case. During the last 90 years in U.S. stock markets, our test detects up to 20% more tail asymmetries than competing tests. This can be attributed to the presence of nonstandard tail dependence structures. We also find evidence for diminishing tail asymmetries during every major financial crisis—except for the 2007–2009 crisis—reflecting a risk-return trade-off for extreme returns. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2018.1506343 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:38:y:2020:i:2:p:380-392
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2018.1506343
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().