A Comparison of Two Quantile Models With Endogeneity
Kaspar Wüthrich
Journal of Business & Economic Statistics, 2020, vol. 38, issue 2, 443-456
Abstract:
This article studies the relationship between the two most-used quantile models with endogeneity: the instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen 2005) and the local quantile treatment effects (LQTE) model (Abadie, Angrist, and Imbens 2002). The key condition of the IVQR model is the rank similarity assumption, a restriction on the evolution of individual ranks across treatment states, under which population quantile treatment effects (QTE) are identified. By contrast, the LQTE model achieves identification through a monotonicity assumption on the selection equation but only identifies QTE for the subpopulation of compliers. This article shows that, despite these differences, there is a close connection between both models: (i) the IVQR estimands correspond to QTE for the compliers at transformed quantile levels and (ii) the IVQR estimand of the average treatment effect is equal to a convex combination of the local average treatment effect and a weighted average of integrated QTE for the compliers. These results do not rely on the rank similarity assumption and therefore provide a characterization of IVQR in settings where this key condition is violated. Underpinning the analysis are novel closed-form representations of the IVQR estimands. I illustrate the theoretical results with two empirical applications.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2018.1514307 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: A Comparison of Two Quantile Models With Endogeneity (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:38:y:2020:i:2:p:443-456
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2018.1514307
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().