Nonparametric Estimation of Search Costs for Differentiated Products: Evidence from Medigap
Haizhen Lin and
Matthijs Wildenbeest
Journal of Business & Economic Statistics, 2020, vol. 38, issue 4, 754-770
Abstract:
This article develops a method to estimate search frictions as well as preference parameters in differentiated product markets. Search costs are nonparametrically identified, which means our method can be used to estimate search costs in differentiated product markets that lack a suitable search cost shifter. We apply our model to the U.S. Medigap insurance market. We find that search costs are substantial: the estimated median cost of searching for an insurer is $30. Using the estimated parameters we find that eliminating search costs could result in price decreases of as much as $71 (or 4.7%), along with increases in average consumer welfare of up to $374.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2019.1573683 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:38:y:2020:i:4:p:754-770
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2019.1573683
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().